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Abstract

We study waves on infinite one-dimensional lattices of particles that
each interact with all others through power-law forces F ∼ r−β . The
inverse-cube case corresponds to Calogero-Moser systems which are well
known to be completely integrable for any finite number of particles. The
formal long-wave limit for unidirectional waves in these lattices is the
Korteweg-de Vries equation if β > 4, but with 2 < β < 4 it is a nonlocal
dispersive PDE that reduces to the Benjamin-Ono equation for β = 3. For
the infinite Calogero-Moser lattice, we find explicit formulas that describe
solitary and periodic traveling waves.
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1 Introduction

In this work we study wave motions in infinite lattices of particles that each
interact with all the others through long-range power-law forces. The particle
positions xj are required to increase with j and evolve according to the equations

ẍj = −α

∞∑
m=1

(
(xj+m − xj)

−α−1 − (xj − xj−m)−α−1
)
, (1)

where α > 1. For α = 2 this is an infinite-lattice version of the famous Calogero-
Moser system [6, 21]

ẍj =
∑
k ̸=j

2

(xj − xk)3
, (2)
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2 Waves in particle lattices with long-range forces

which is well-known to be completely integrable and has been extensively inves-
tigated when the number of particles is finite.

Wave motions have been widely examined in infinite particle lattices with
nonlinear nearest-neighbor forces, known as Fermi-Pasta-Ulam-Tsingou (FPUT)
lattices. Such lattices typically admit a Korteweg-de Vries scaling limit for the
unidirectional propagation of long waves of small amplitude, a fact that helped
to trigger the great bounty of discoveries in the theory of completely integrable
systems that has emerged over the last half-century [40].

Also, FPUT lattices typically admit exact solitary wave solutions [35, 15,
14]. The form of these waves is known explicitly only in the case of the Toda
lattice, which is completely integrable. Recently Vainchtein [36] surveyed work
on solitary waves in lattices, including lattices with next-nearest-neighbor or
longer-range interactions. In particular, existence theorems for interactions of
any finite range were proved recently by Herrmann and Mikikits-Leitner [17]
using a KdV approximation argument, and by Pankov [23] using variational
methods. The former authors mention that the approximation argument should
work for infinite-range interactions if their strength decays rapidly enough, e.g.,
exponentially fast.

Strong motivation for considering lattice systems with power-law forces such
as (1) comes from experimental work on solitary waves in chains of repelling
magnets by Molerón et al. [20]. These authors mention that long-range dipole-
dipole interactions between magnets separated by a large distance d involve
repulsive forces proportional to d−4 in theory. Over distances appropriate to
their experiments, however, measurements better fit a force law proportional
to d−β with β ≈ 2.73. The Calogero-Moser force law, with β = 3, may be
considered a reasonable approximation. And since such power-law forces have
long range, it is interesting to consider the infinite-range limit represented by
(1). Admittedly, the system (1) is not a perfect model for the experiment setup
of [20], not only because dissipation is neglected, but because a given magnet
successively repels and attracts others along the chain due to the alternating
orientation of north and south poles. Such forces can be treated as differences
between forces from two systems of repulsive forces, though, and we will dis-
cuss this. Studying the system (1) is clearly an important step anyway toward
understanding more general systems with forces of infinite range.

Formal long-wave scaling limits

As it turns out, a formal KdV limit is possible for the system (1) with power-
law forces of infinite range, but only when α is sufficiently large, namely when
β = α+1 ≥ 4 as we show below. When 2 < β < 4, we find instead in Section 2
that a different scaling limit obtains, with small long waves formally governed
by a nonlocal dispersive PDE of the form

∂tu+ u∂xu+H|D|αu = 0 . (3)

Here H is the Hilbert transform, and |D|α has Fourier symbol |k|α, thus the dis-
persion term f = H|D|αu has Fourier transform f̂(k) = (−i sgn k)|k|αû(k). For
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the case α = 2 corresponding to the infinite Calogero-Moser lattice in particular,
(3) is the Benjamin-Ono equation, in the form

∂tu+ u∂xu−H∂2
xu = 0 . (4)

There is a well-known link between the Calogero-Moser system and Benjamin-
Ono equations through the pole dynamics of rational solutions [3, 8, 7, 32]. Also
through pole dynamics, formal continuum limits of Calogero-Moser systems have
been connected with coupled Benjamin-Ono-type equations in the physics lit-
erature [28, 32, 1]. To our knowledge, however, the long-wave limit that we
consider herein has not been previously described.

Formulae for Calogero-Moser waves

The fact that dispersive PDE of the form in (3) admit solitary wave solutions is
a consequence of the analyses of Benjamin et al. [5] and Weinstein [37]. For the
long-range particle system (1), a rigorous analysis of existence for solitary waves
is out of the scope of the present paper. It is plausible, though, that such an
analysis could be performed by methods like those used for FPUT lattices and
lattices with longer-range interactions, either of variational character [15, 23, 24]
or of iterative/fixed-point character [14, 16, 17].

At present, we focus discussion of solitary and periodic traveling waves to
the special case of the infinite Calogero-Moser lattice. Waves traveling to the
right in such a lattice are solutions with the property that after some time delay
τ > 0, the configuration of the lattice recurs with an index shift and a spatial
shift h > 0, so that

xj+1(t+ τ) = xj(t) + h (5)

for all j and t. This means that traveling waves can be expressed in the form

xj(t) = jh− φ(jh− ct), (6)

where c = h/τ and −φ(−ct) = x0(t) for all t. Moreover, by the scaling xj 7→
hxj , t 7→ h2t which leaves (2) invariant, and a choice of origin for space and
time, we can suppose h = 1 and x0(0) = 0.

By making use of Bäcklund transforms for Calogero-Moser-Sutherland sys-
tems (see [38, 39] and also [1, 32, 27]), we have managed to derive striking
explicit formulas that determine both solitary waves and periodic waves for
Calogero-Moser lattices.

Theorem 1 (Solitary waves). For each wave speed c satisfying c2 > π2, the
infinite Calogero-Moser lattice admits a solitary wave solution of the form

xj(t) = j − φ(j − ct), (7)

where φ = φ(s) increases from φ(−∞) = − 1
2 to φ(+∞) = 1

2 and is determined
by the relation

(c2 − π2)(s− φ) = π tanπφ . (8)
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The significance of the condition c2 > π2 lies in the fact that π is the speed
of long waves in the linearized Calogero-Moser lattice. Thus these solitons exist
with any speed exceeding the “sound speed” π. These solitons are compres-
sion waves that produce a unit translation of particles in the direction of wave
motion, with xj(t) increasing from j− 1

2 to j+ 1
2 as t increases from −∞ to ∞.

The result above for solitary waves will follow by taking limits of waves on
the infinite lattice that are periodic in space, satisfying

xj+N (t) = xj(t) + L, (9)

where N > 1 is an integer and L > 0 is real. Traveling waves of the form (7)
satisfy this periodicity condition if and only if the wave profile φ(s) satisfies

φ(s+N) = φ(s) +N − L for all s. (10)

For such periodic waves, since xj+nN = xj + nL and due to the pole expansion
identity ∑

n∈Z

2

(z − n)3
=

d2

dz2
(π cotπz) = 2π3 cosπz

sin3 πz
, (11)

the infinite-lattice Calogero-Moser equations (2) reduce to Calogero-Sutherland
equations for finitely many particles, namely Hamilton’s equations of motion
for the Hamiltonian

HCS =
1

2

N∑
j=1

p2j +
1

2

N∑
j,k=1
j ̸=k

a2

sin2(a(qj − qk))
, (12)

with qj = xj , pj = ẋj , and a = π
L , see [33, 32, 27]. Explicitly, we find the

following.

Theorem 2 (Periodic waves). The infinite Calogero-Moser lattice admits wave
solutions satisfying (7) and (9) with φ(s) odd and monotone increasing being
determined for s ∈ (−N/2, N/2) by a relation of the form

κ tan (a(s− φ)) = tanπφ . (13)

Here a = π
L with L = N − 1, and κ > 1 is determined for any c > π + a by

κ =
1 + ν

1− ν
, ν =

√
c2 − (π + a)2

c2 − (π − a)2
. (14)

The proof of Theorem 2 will be provided in Section 3 below, where we
also discuss a connection to the projection method devised by Olshanetsky and
Perelomov [22] for the general solution of Calogero-Moser-Sutherland systems.
Theorem 1 will be derived in Section 4 through taking the limit N → ∞.
Galilean transformations can be applied to these results to obtain a broader
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family of waves, but we have no proof that all Calogero-Moser solitary and
periodic waves are obtained in this way.

The paper concludes with a discussion of how the solitary wave profiles
behave in the limits as c → ∞ and as c approaches π, along with numerical
illustrations and comparison with wave profiles for nearest neighbor models
corresponding to keeping only the term with m = 1 in system (1), especially for
the case α = 1.73 taken by Molerón et al. [20].

There is some evidence that the waves we find can be stable, as numeri-
cal computations reported by Abanov et al. [2] and Philip [27] show localized
“1-soliton” waves repeatedly passing over a finite array of particles subject to
Calogero-Moser dynamics with a weak harmonic trapping force. The question
of stability deserves a much more thorough investigation than we have space to
undertake here, however, and we leave it for future research.

But before treating wave formulae, first in Section 2 we carry out a formal
long-wave scaling analysis of the lattice equations in (1). When initially looking
to study solitary waves on the infinite Calogero-Moser lattice in the long-wave
limit, it was surprising to us that the KdV scaling fails to be correct. Thus it
behooves us to explain what the correct scaling limit should be. It takes little
more effort to do this for power-law forces with different exponents, and the
fact that such forces lead to the nonlocal continuum limits in (3) is of general
interest.

We also adapt the analysis to formally handle systems with forces alternating
in sign, as appears appropriate for modeling the experiments of [20]. Pairing
consecutive terms produces an effective repulsive force that decays as d−α−2 at
long range. For α > 2 this results in a KdV scaling, as one may expect from the
case of purely repulsive forces. For 0 < α < 2 one might expect to get a nonlocal
PDE of the form (3) with α replaced by α+ 1. Thus it is quite surprising that
instead a KdV scaling still works, for all α > 0.

2 The long-wave scaling limit

The lattice equations (1) are in equilibrium for particles with a uniform spacing
that may be taken to be unity after a trivial scaling. Considering perturbations
xj = j + ϵvj about this equilibrium solution and retaining only terms of order
ϵ results in the linearized system

v̈j = α(α+ 1)

∞∑
m=1

vj+m − 2vj + vj−m

mα+2
. (15)

Seeking solutions vj(t) = ei(kj−ωt) with wave number k yields a dispersion
relation with squared phase speed

ω2

k2
= α(α+ 1)

∞∑
m=1

sinc2( 12km)

mα
, sincx =

sinx

x
. (16)
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The maximal linear wave speed appears in the long-wave limit, where we get∣∣∣ω
k

∣∣∣→ cα :=
√
α(α+ 1)ζα , (17)

in terms of the Riemann zeta function denoted ζs =
∑∞

m=1 m
−s. In particular

the long-wave speed in the Calogero-Moser lattice is c2 = π, since ζ2 = π2

6 .
This long-wave limit formally leads to the expectation that the scaling ansatz

xj = j + ϵv(ϵj, ϵt) should require v(x, τ) to approximate a solution of the wave
equation

∂2
τv = c2α∂

2
xv , (18)

up to residual errors that vanish as ϵ → 0 for times t of order O(1/ϵ). In
traditional fashion, we now examine the effects of dispersion and nonlinearity
on long waves traveling in one direction over longer time scales, by making the
scaling ansatz

xj = j + ϵpv(ϵ(j − cαt), ϵ
qt) . (19)

The case p = 1, q = 3 corresponds to the classical KdV scaling.
For the sake of clarity regarding the results of formal scaling analysis, let

us define the lattice error of the ansatz (19) in equation (1) to be the result of
substituting (19) into the expression

Rϵ = ẍj + α

∞∑
m=1

(
(xj+m − xj)

−α−1 − (xj − xj−m)−α−1
)
. (20)

We consider this as a function Rϵ = Rϵ(x, τ) where x = ϵ(j − cαt) and τ = ϵqt.
The result of formal scaling analysis will be to show that for a suitably “nice”
function v(x, τ), taken as fixed, the lattice error takes the form

Rϵ(x, τ) = ϵp+q+1Q(x, τ) + o(ϵp+q+1) (21)

in the limit ϵ → 0. The function Q is independent of ϵ and is the error of
substituting u = −∂xv after a simple scaling into either a nonlocal PDE of the
form (3), or the KdV equation

∂τu+ u∂xu+ ∂3
xu = 0. (22)

Notably, the lattice error Rϵ will be o(ϵp+q+1) if and only if Q = 0, meaning u
is a solution of the nonlocal PDE or the KdV equation in the appropriate case.

Theorem 3. Let α > 1 with α ̸= 3. Assume v(x, τ) is smooth with square-
integrable derivatives ∂j

xv for 1 ≤ j ≤ 5. Then with

u(x, τ) = −∂xv(x, τ) , κ1 = 2cα , κ2 = α(α+ 1)(α+ 2)ζα ,

the lattice error relation (21) holds as follows.

(i) For α > 3, p = 1, q = 3, we have Rϵ = ϵ5Q+ o(ϵ5) with

Q = κ1 ∂τu+ κ2 u∂xu+ κ3 ∂
3
xu, κ3 = 1

12α(α+ 1)ζα−2 .



B. Ingimarson and R. L. Pego 7

(ii) For 1 < α < 3, p = α− 2, q = α, we have Rϵ = ϵ2α−1Q+ o(ϵ2α−1) with

Q = κ1 ∂τu+κ2 u∂xu+κ3 H|D|αu, κ3 = α(α+1)

∫ ∞

0

1− sinc2(x/2)

xα
dx .

Remark 1. The case α = 3 requires a logarithmic correction to the KdV scaling.
In Appendix A, we show that if (19) is replaced in this case by the scaling ansatz

xj = j + ϵ log(1/ϵ)v(ϵ(j − c3t), ϵ
3 log(1/ϵ)t), (23)

then Rϵ = ϵ5 log2(1/ϵ)(Q+ o(1)) where Q is as in part (i) but with κ3 = 1.

Remark 2. The PDE errors take a simpler form after a scaling. We find that in
case (i), Q = ∂τ ũ+ ũ∂xũ+ ∂3

xũ, where ũ(x, τ) = γ2u(γax, γ3bτ) with

a2 =
κ3

κ2
, b =

κ1a

κ2
, γ5 =

κ2

a
.

In case (ii), Q = ∂τ ũ+ ũ∂xũ+H|D|αũ, where ũ(x, τ) = γα−1u(γax, γαbτ) with

aα−1 =
κ3

κ2
, b =

κ1a

κ2
, γ2α−1 =

κ2

a
.

We emphasize that Theorem 3 is the result of a purely formal long-wave
analysis. Of course, it would be desirable to prove a long-wave approximation
theorem that compares true solutions of the lattice system (1) to solutions of the
nonlocal PDE (3) over the appropriate time scale. Such an analysis is beyond
the scope of the present paper, however. We expect it would involve delicate
stability estimates for dispersive wave propagation such as have been used to
justify KdV limits in various fluid and lattice systems [9, 29, 30, 18].

Proof. From (19), it is convenient to express differences of lattice particle posi-
tions in terms of u as follows. We write

xj+m − xj = m+ ϵp(v(x+ ϵm, τ)− v(x, τ)) = m(1− ϵp+1Aϵmu),

xj − xj−m = m+ ϵp(v(x, τ)− v(x− ϵm, τ)) = m(1− ϵp+1A−ϵmu),

in terms of the averaging operator defined for h ̸= 0 by

Ahu(x, τ) =
1

h

∫ h

0

u(x+ z, τ) dz . (24)

By our assumptions this is uniformly bounded, with

|Ahu(x, τ)| ≤ ∥u∥∞ = O(1). (25)

Then with the shorthand α1 = α + 1, α2 = 1
2 (α + 1)(α + 2), Taylor expansion

yields

mα+1

(xj+m − xj)α+1
= 1 + α1ϵ

p+1Aϵmu+ α2ϵ
2p+2(Aϵmu)2 +O(ϵ3p+3) ,

mα+1

(xj − xj−m)α+1
= 1 + α1ϵ

p+1A−ϵmu+ α2ϵ
2p+2(A−ϵmu)2 +O(ϵ3p+3) .
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Then we can write (20) as

Rϵ = ẍj + αα1Lϵ + αα2Nϵ +O(ϵ3p+3) , (26)

where the acceleration, linear and nonlinear terms are given by

ẍj = −ϵp+2c2α∂xu+ 2ϵp+q+1cα∂τu+ ϵp+2q∂2
τv , (27)

Lϵ = ϵp+1
∞∑

m=1

1

mα+1
(Aϵmu−A−ϵmu) , (28)

Nϵ = ϵ2p+2
∞∑

m=1

1

mα+1
(Aϵmu+A−ϵmu)(Aϵmu−A−ϵmu) . (29)

Let us first estimate factors in the nonlinear term.

Lemma 4. For fixed x, τ , we have Nϵ = ϵ2p+3
(
2ζαu∂xu

)
+ o(ϵ2p+3).

Proof. We have

Aϵmu+A−ϵmu =
1

ϵm

∫ ϵm

−ϵm

u(x+ z, τ) dz = 2u(x, τ) + om(1) , (30)

where the notation om(1) denotes a generic term that is uniformly bounded
with respect to m and satisfies om(1) → 0 as ϵ → 0 for each fixed m. For the
difference factor, we have

Aϵmu−A−ϵmu

ϵm
=

1

(ϵm)2

∫ ϵm

0

u(x+ z, τ)− u(x+ z − ϵm, τ) dz

=
1

(ϵm)2

∫ ϵm

0

∫ 0

−ϵm

∂xu(x+ y + z, τ) dy dz

= ∂xu(x, τ) + om(1) , (31)

since our assumptions ensure ∂xu is bounded and continuous. By consequence
we find that as ϵ → 0,

Nϵ = ϵ2p+3
∞∑

m=1

1

mα
(2u∂xu+ om(1)) , (32)

and the lemma follows by dominated convergence.

By (31), we find similarly that the leading part of the linear term is

Lϵ = ϵp+2ζα∂xu+ o(ϵp+2) (33)

This cancels with the term ϵp+2c2α∂xu in ẍj since the sound speed in the lin-
earized lattice satisfies c2α = αα1ζα from (17). The dispersive term arises at the
next order in the expansion of Lϵ. We consider first the easier case α > 3.
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Case (i): For α > 3, standard use of Taylor’s theorem yields

−Aϵmu−A−ϵmu

ϵm
=

v(x+ ϵm, τ)− 2v(x, τ) + v(x− ϵm, τ)

(ϵm)2

= ∂2
xv +

(ϵm)2

12
(∂4

xv + om(1)), (34)

since our assumptions ensure ∂4
xv is bounded and continuous. Hence we have

Lϵ = ϵp+2
∞∑

m=1

1

mα

(
∂xu+

ϵ2m2

12
(∂3

xu+ om(1))

)
= ϵp+2ζα∂xu+ 1

12ϵ
p+4ζα−2∂

3
xu+ o(ϵp+4), (35)

by dominated convergence. Then taking p = 1 and q = 3 (corresponding to
the KdV scaling), the dispersive and nonlinear terms balance and we find Rϵ =
ϵ5Q+ o(ϵ5) with Q as stated in the Theorem.

Case (ii): For α ≤ 3 the ordinary KdV scaling fails, due to the divergence of
the series

∑
1/mα−2 appearing in (35). To study the linear term Lϵu we take

the Fourier transform, defined for u ∈ L1(R) (suppressing dependence on τ) by

û(k) = Fu(k) =
1

2π

∫
R
u(x)e−ikx dx .

Since ∂̂xu(k) = ikû(k) and Âϵmu(k) = û(k)(eiϵmk − 1)/iϵmk, we find

L̂ϵ(k) = ϵp+1
∞∑

m=1

1

mα+1

(eiϵmk/2 − e−iϵmk/2)2

(iϵmk)2
(iϵmk)û(k)

= ϵp+2ikû(k)

∞∑
m=1

sinc2(ϵmk/2)

mα

= ϵp+2ikû(k)

(
ζα − (ϵ|k|)α

∞∑
m=1

1− sinc2(ϵm|k|/2)
(ϵm|k|)α

)
. (36)

The last line involves a Riemann sum approximation to a convergent integral.
Since 1 < α < 3, we have

h

∞∑
m=1

1− sinc2(mh/2)

(mh)α
−→
h→0

ηα :=

∫ ∞

0

1− sinc2(x/2)

xα
dx < ∞ . (37)

Therefore we infer that as ϵ → 0,

L̂ϵ(k) = ϵp+2û(k)
(
ikζα + ϵα−1(−i sgn k|k|α)(ηα + ok(1))

)
. (38)

Upon Fourier inversion we find

Lϵ(x, τ) = ϵp+2ζα∂xu+ ϵp+α+1ηαH|D|αu+ ϵp+α+1Eϵ(x, τ) , (39)
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where Êϵ(k) = û(k)|k|αok(1). Our assumptions ensure û(k)|k|α is integrable,
for since 1

2 (1 + k2)|k|2α ≤ 1 + k8, by the Cauchy-Schwarz inequality we have(∫ ∞

−∞
|û(k)||k|α dk

)2

≤ 2

∫ ∞

−∞
|û(k)|2(1 + k8) dk

∫ ∞

−∞

dk

1 + k2

= C

∫ ∞

−∞
u2 + (∂4

xu)
2 dx < ∞ .

By Fourier inversion and dominated convergence it follows Eϵ(x, τ) = o(1).
Taking p = α− 2 and q = α, the linear and nonlinear terms in Rϵ now balance
and we find Rϵ = ϵ2α−1Q+ o(ϵ2α−1) with Q as stated in the Theorem.

Remark 3. An explicit formula for the integral ηα in (37) is

ηα =

{
−2 sin (πα/2) Γ(−1− α) , α ∈ (1, 2) ∪ (2, 3),

π/6 , α = 2.
(40)

This formula for general α is motivated from the form of Ramanujan’s Master
Theorem [4], which relates to Mellin transforms. We were not able to verify
the hypotheses of this theorem, unfortunately, but instead found the following
rather uncomplicated direct proof of (40): Note ηα = 2

∫∞
0

x2−αf(x) dx where

f(x) :=
1− sinc2( 12x)

2x2
=

cosx− 1 + 1
2x

2

x4
. (41)

For s, p > 0 we have
∫∞
0

xs−1e−px dx = p−s Γ(s), and this formula extends by
analytic continuation to hold whenever Re s and Re p > 0. Taking p = ϵ ± i
with ϵ > 0 we find

I(s, ϵ) :=

∫ ∞

0

xs−1x4f(x)e−ϵx dx

=
1

2

(
(ϵ− i)−s + (ϵ+ i)−s

)
Γ(s)− ϵ−sΓ(s) +

1

2
ϵ−s−2Γ(s+ 2) .

The integral I(s, ϵ) is analytic in the half-plane where Re s > −4, and this
formula extends analytically to this half-plane. For Re s ∈ (−4,−2) with s ̸= −3
we can take the limit ϵ ↓ 0 and infer

I(s, 0) = cos
(πs

2

)
Γ(s) . (42)

Taking s = −1 − α we deduce the first formula in (40). To get the second
formula, take s → −3.

Alternating forces

For a system having power-law interaction forces that alternately repel and
attract, given by

ẍj = −α

∞∑
m=1

(
(xj+m − xj)

−α−1 − (xj − xj−m)−α−1
)
(−1)m−1 , (43)
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we find that the KdV scaling as in part (i) of Theorem 3 works for all α > 0.
The only change in the statement, aside from including a factor (−1)m in the
definition of the lattice error Rϵ in (20), is that for determining the sound
speed cα and the coefficients, the zeta function values ζα and ζα−2 should be
respectively replaced by values ζ∗α and ζ∗α−2 of the alternating zeta function
given by ζ∗s = ζs(1− 21−s), satisfying ζ∗s =

∑∞
m=1(−1)m−1m−s for Re s > 0.

Theorem 5. Let α > 0 and take v and u as in Theorem 3. Then under the
ansatz (19) with p = 1, q = 3, cα =

√
α(α+ 1)ζ∗α, the lattice error Rϵ for

system (43) satisfies Rϵ = ϵ5Q+ o(ϵ5), where

Q = κ1 ∂τu+ κ2 u∂xu+ κ3 ∂
3
xu,

with κ1 = 2cα, κ2 = α(α+ 1)(α+ 2)ζ∗α, and κ3 = 1
12α(α+ 1)ζ∗α−2.

When α > 3 the proof is a simple modification of the arguments above for
proving part (i) of Theorem 3. For 0 < α ≤ 3 the proof is a modification of the
proof of part (ii), with the only essential change being that the expression in
(36) now takes the form

L̂ϵ(k) = ϵ3ikû(k)
(
ζ∗α − Sα(ϵ|k|)

)
, (44)

Sα(h) =

∞∑
m=1

1− sinc2(mh/2)

mα
(−1)m−1. (45)

Then based on the following lemma, one finds that (38) changes to

L̂ϵ(k) = ϵ3ζ∗α∂̂xu(k) +
1
12ϵ

5ζ∗α−2∂̂
3
xu(k)(1 + ok(1)), (46)

and the rest of the proof goes as before.

Lemma 6. For any α > 0, we have Sα(h) =
1
12ζ

∗
α−2 h

2 +O(h3) as h → 0.

We prove this lemma in Appendix B using the inversion formula for the
Mellin transform and path deformation; see [12] for this method.

3 Periodic Calogero-Moser-Sutherland waves

3.1 Bäcklund transforms for Calogero-Sutherland systems

Our strategy to prove Theorem 2 involves equations for Calogero-Sutherland
systems introduced by Wojciechowski [38] that he called an analogue of the
Bäcklund transformations known for other integrable systems. The equations
couple N particle positions x1, . . . , xN ∈ C with M “dual” particle positions
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y1, . . . , yM ∈ C. In the case we will use, they take the form

iẋj =

N∑
k=1
k ̸=j

a cot a(xj − xk)−
M∑

m=1

a cot a(xj − ym) , (47)

iẏn =

N∑
k=1

a cot a(yn − xk)−
M∑

m=1
m̸=n

a cot a(yn − ym) . (48)

For any solution of these coupled equations, it is well known (but see Appendix C
for an efficient proof) that x1, . . . , xN and y1, . . . , yM separately solve decoupled
Calogero-Sutherland systems, with

ẍj = 2a3
N∑

k=1
k ̸=j

cos a(xj − xk) sin
−3 a(xj − xk) , (49)

ÿn = 2a3
M∑

m=1
m̸=n

cos a(yn − ym) sin−3 a(yn − ym) . (50)

Several authors [2, 32, 27] refer to solutions of the coupled system (47)–(48)
as providing “M -soliton” solutions of the Calogero-Moser-Sutherland system
(49). Possibly this terminology is motivated by the connection, through pole
dynamics, with rational N -soliton solutions of the Benjamin-Ono equations in
the case when N = M and yj = x̄j and when the function ϕ(r) = a cot ar
is replaced by ϕ(r) = 1/r above [7]. In this rational case when ϕ(r) = 1/r a
harmonic force term is sometimes included.

3.2 Steps to prove Theorem 2

Throughout this section we assume a = π
L with L = N − 1 ∈ N. The proof of

Theorem 2 will have four main steps:

1. First, we show that for any κ > 1, the relation (13), together with the
periodicity property

φ(s+N) = φ(s) + 1 , (51)

determines a unique strictly increasing real analytic function φ(s) on the
line, and that (7) then defines lattice particle positions xj(t) for j ∈ Z
with the desired periodic wave symmetries in (5) and (9).

2. Next, we infer that corresponding points on the unit circle in C, given by

zj = e2iaxj , j = 1, . . . , N, (52)

comprise N distinct roots of a certain polynomial of degree N , given by

P (z;σ) := zN − νσzN−1 + νz − σ , ν =
κ− 1

κ+ 1
, σ = e2iact. (53)



B. Ingimarson and R. L. Pego 13

3. Third, under the assumption that ν and c are related as in (14), we deduce
that the Bäcklund transform equations (47)–(48) hold, with M = 1 and
with y1(t) = y0(t) + L where

y0(t) = ct− ib, (54)

for a certain value of b determined by c and N .

4. The final step is simply to deduce that thus x1, . . . , xN satisfy the Calogero-
Sutherland equations (49), and therefore the xj (for j ∈ Z) form an N -
periodic wave solution of the Calogero-Moser system (2).

We remark that our discovery of the determining formula (13) for the wave
profile proceeded by seeking traveling-wave solutions for the Bäcklund transform
equations, and ignoring the real part of (47). We omit this heuristic derivation
as it is somewhat involved and would muddy the logic of the rigorous proof.

3.3 Profile and wave symmetries

Lemma 7. Let κ > 1 be arbitrary. Then there is a unique strictly increasing
real analytic function φ : R → R such that the relation (13) holds, together with
the periodic-shift condition (51).

Proof. We first determine y (later = (s− φ)/L) as a function of φ so that

κ tanπy = tanπφ and κ cotπφ = cotπy. (55)

One checks that y = ŷ(φ) can be defined on R by direct integration from

y =

∫
κ dφ

κ2 cos2 πφ+ sin2 πφ
, y(0) = 0, (56)

after substituting κw = tanπφ. Clearly ŷ : R → R is odd, strictly increasing,
surjective and real analytic, and moreover ŷ(φ+ 1) = ŷ(φ) + 1 for all φ.

Next, with s = ŝ(φ) defined by s = φ + Ly, clearly relation (13) holds,
and moreover ŝ is odd, strictly increasing, surjective and real analytic, with
ŝ(φ+1) = ŝ(φ)+N for all φ. Upon inverting, we find φ as a function of s with
all the properties claimed.

Corollary 8. Let c > 0. With xj(t) given by (7) for all j ∈ Z, the traveling-
wave symmetry condition (5) (with h = 1 = cτ) and the periodic-wave symmetry
condition (9) both hold. Moreover, for all j ∈ Z,

xj < xj+1 < . . . < xj+N = xj + L.

Proof. Observe xj − ct = j + s− φ(j + s) where s = −ct. The symmetry (5) is
easy to check. Also, xj is strictly increasing in j since s − φ(s) = Lŷ(φ(s)) is
strictly increasing in s. And, (51) implies xj+N = xj + L, hence the result.
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3.4 Periodic waves and polynomial roots

Lemma 9. Let zj = e2iaxj for all j ∈ Z. Then for all real t, the values
z1(t), . . . , zN (t) are distinct and comprise all N roots of the polynomial

P (z;σ) := zN − νσzN−1 + νz − σ , with ν =
κ− 1

κ+ 1
, σ = e2iact.

Proof. It follows from Corollary 8 that zj+N = zj for all j and that z1, . . . , zN
are distinct complex numbers on the unit circle. Next, observe that relation
(13) says that for all s,

κ tan a(s− φ) =
κ

i

e2ias − e2iaφ

e2ias + e2iaφ
=

1

i

e2iπφ − 1

e2iπφ + 1
= tanπφ . (57)

In terms of u = e2iaφ(s) = e2iπφ/L and noting σ̄ = e2ias, this is equivalent to

0 = κ(u− σ̄)(uL + 1) + (u+ σ̄)(uL − 1),

and again to the polynomial equation

0 = uL+1 − νσ̄uL + νu− σ̄ = P (u; σ̄) = P (e2iaφ(s); e2ias). (58)

Since z̄k = e2ia(φ(s+k)−k) and e2iaL = e2πi = 1, we find

P (z̄k; σ̄) = P (e2ia(φ(s+k)−k); e2ias)

= e−2iakP (e2iaφ(s+k); e2ia(s+k)) = 0.

Upon conjugation we obtain P (zk;σ) = 0, for every k ∈ Z and t ∈ R.

3.5 Validity of Bäcklund transform equations

Proposition 10. Let c > π + a, let y0(t) = ct− ib, and assume µ = e2ab and

µ =

√
(c+ a)2 − π2

(c− a)2 − π2
, ν =

√
c2 − (π + a)2

c2 − (π − a)2
. (59)

Then the following Bäcklund transform equations hold:

iẋj =

N∑
k=1
k ̸=j

a cot(a(xj − xk))− a cot(a(xj − y0)) , (60)

iẏ0 =

N∑
k=1

a cot(a(y0 − xk)) . (61)

Before starting the proof proper, we express equation (60) in terms of the
variables zj using the identities

cot(x− y) = i
e2ix + e2iy

e2ix − e2iy
, e2iay0 = e2iacte2ab = σµ. (62)
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Then (60) is equivalent to

1

2ia

żj
zj

= a

N∑
k=1
k ̸=j

zj + zk
zj − zk

− a
zj + σµ

zj − σµ
. (63)

The sum can be expressed in terms of zj alone, in terms of P (z) = P (z;σ):

Lemma 11. For each j it holds that

N∑
k=1
k ̸=j

zj + zk
zj − zk

=
zjP

′′(zj)− LP ′(zj)

P ′(zj)
=

LνσzN−2
j − Lν

(L+ 1)zN−1
j − LνσzN−2

j + ν
.

Proof. Fix j and note that

N∑
k=1
k ̸=j

zj + zk
zj − zk

=

N∑
k=1
k ̸=j

zk − zj + 2zj
zj − zk

= −L+ 2zj

N∑
k=1
k ̸=j

1

zj − zk
.

Now, since P (z) =
∏N

k=1(z − zk), for P (z) ̸= 0 we have

N∑
k=1
k ̸=j

1

z − zk
=

P ′(z)

P (z)
− 1

z − zj
=

P ′(z)(z − zj)− P (z)

P (z)(z − zj)
.

Then by Taylor expansion at zj (or L’Hôpital’s rule), taking z → zj yields

N∑
k=1
k ̸=j

1

zj − zk
=

P ′′(zj)

2P ′(zj)
.

This proves the Lemma.

Proof of Proposition 10. 1. We will prove (63) first. To begin we note that µ
and ν are related by the equations

µν =
c+ a+ π

c− a+ π
,

µ

ν
=

c+ a− π

c− a− π
. (64)

Next, differentiation of P (zj ;σ) = 0 yields, since σ̇ = 2iacσ,

żjP
′(zj) = σ̇(νzN−1

j + 1) = 2iac(zNj + νzj).

Combining this with the last Lemma, in order to verify (63) it suffices to show

c
zN−1 + ν

P ′(z)
= aLν

σzN−2 − 1

P ′(z)
− a

z + σµ

z − σµ
. (65)
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We drop the subscript, writing z = zj here and for the rest of this step of the
proof. Cross-multiplying, we find (65) is equivalent to

0 = (czN−1 + cν − aLνσzN−2 + aLν)(z − σµ)

+ a((L+ 1)zN−1 − LνσzN−2 + ν)(z + σµ) .

Because aL = π we find this equivalent to

0 = (c+ π + a)(zN + νz)− σzN−1((c− π − a)µ+ 2πν)− σµν(c+ π − a).

But due to the relations (64) this is equivalent to

0 = (c+ π + a)P (z;σ) ,

which is true. This completes the proof of (63).
2. It remains to prove (61). Note that by summing (60) we find

N∑
k=1

a cot a(y0 − xk) =

N∑
k=1

iẋk −
N∑

k=1

N∑
l=1
l ̸=k

a cot a(xk − xl).

The double sum vanishes since terms cancel in pairs upon switching k and l.
Thus to prove (61) it suffices to show

c =

N∑
k=1

ẋk . (66)

But since P (z) =
∏N

k=1(z − zk) we get P (0) = −σ = (−1)N
∏N

k=1 zk, so that

σ = e2iact = (−1)L exp

(
2ia

N∑
k=1

xk

)
.

Upon differentiating this, we infer (66) is valid, and this proves (61).

3.6 Conclusion of the proof of Theorem 2

From the Bäcklund equations in Proposition 10, it follows that the Calogero-
Sutherland equations (49) hold. This implies, due to the pole expansion identity
(11), that the infinite sequence xj(t), j ∈ Z, which satisfies xj+nN = xj + nL
for all j and n, satisfies the Calogero-Moser system (2), for (49) and (11) imply

ẍj =
2

L3

N∑
k=1
k ̸=j

∑
n∈N

(
xj − xk

L
− n

)−3

=
∑
k∈Z
k ̸=j

2

(xj − xk)3
.

Note the terms in the last sum with k = j + nN cancel in opposite-sign pairs.
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3.7 Relation to the projection method

The solution of the general initial-value problem for the Calogero-Sutherland
system can be described by means of the so-called projection method of Ol-
shanetsky and Perelomov [22]. We have not made any use of the projection
method in deriving or verifying the formulas for periodic waves in Theorem 2.
But there appears to be a relation to it which we can only partially explain,
going through the polynomial root properties from Lemma 9.

Operationally, the projection method determines solutions as follows: The
time-dependent quantities zj = e2iaxj are the eigenvalues of a matrix expressed
as

X(t) = Be2iaAtB , (67)

where the matrices A and B are explicitly given by initial data, with entries

Ajk = δjk ẋj(0) + (1− δjk)
ia

sin a(xj(0)− xk(0))
, (68)

Bjk = δjk e
iaxj(0) . (69)

(See Appendix D for an explanation, and a modified solution procedure.)

For initial data that correspond to a periodic wave given by Theorem 2, by
Lemma 9 it follows that the characteristic polynomial of X(t) must be identical
to the polynomial P (z) = P (z;σ), i.e.,

det(zI −X(t)) = P (z) . (70)

Why the characteristic polynomial should have such a simple expression in this
case may be an interesting issue for further investigation.

4 Calogero-Moser solitary waves

4.1 Proof of Theorem 1

We now turn to the proof of Theorem 1. Fix c > π. The aim is to show that if
φ(s) is determined by (8) and xj(t) by (7), then the Calogero-Moser equations
(2) hold. It suffices to do this for j = 0 only, due to the fact that the shift
symmetry (5) with h = 1, τ = 1/c implies for all j, k and all t,

xk(t) = xk+j(t+ jτ)− j.

We introduce the notation

xN
j (t) = j − φN (j − ct)

to denote the N -periodic wave solutions of the Calogero-Moser system as de-
scribed by Theorem 2, where φN is determined by (13). In order to prove
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Theorem 1, it suffices to prove the following three limit identities, for every
t ∈ R:

xj(t) = lim
N→∞

xN
j (t) , for all j ∈ Z, (71)

ẍ0(t) = lim
N→∞

ẍN
0 (t) , (72)∑

k ̸=0

2

(x0 − xk)3
= lim

N→∞

∑
k ̸=0

2

(xN
0 − xN

k )3
. (73)

To proceed, we first study the coefficients ν and κ determined from N by (14):

Lemma 12. As N → ∞, we have ν → 1 and κaπ → c2 − π2.

Proof. Recalling a = π
L with L = N − 1, this last follows from the relation

κ =
(1 + ν)2

1− ν2
= (1 + ν)2

(
c2 − (π − a)2

4πa

)
.

Evidently, both (71) and (72) follow immediately from pointwise convergence

of the derivatives φ
(n)
N of φN to those of φ:

Lemma 13. φ(n)(s) = limN→∞ φ
(n)
N (s) for n = 0, 1, 2 and all s ∈ R.

Proof. By differentiating the relations (8) and (13) that respectively determine
φ and φN , after a bit of calculation we find

φ′(s) =
(c2 − π2) cos2 πφ

π2 + (c2 − π2) cos2 πφ
, (74)

φ′
N (s) =

κaπ cos2 πφN

π2 cos2 a(s− φN ) + κaπ cos2 πφN
. (75)

Since φ(0) = 0 = φN (0), the pointwise convergence φN (s) → φ(s) as N → ∞
(uniformly on compact sets, in fact) follows from Lemma 12 by continuous
dependence for initial-value problems for ODEs. Then φ′

N (s) → φ′(s) follows
from the ODEs, and φ′′

N (s) → φ′′(s) follows by differentiating the ODEs.

To justify the last limit formula (73), observe that for all k ̸= 0,

|x0(t)− xk(t)| = |k|
∣∣∣∣1− φ(s+ k)− φ(s)

k

∣∣∣∣ .
Then from the lemma below, we obtain the bounds

|xN
0 − xN

k | ≥ δ|k|, 2

|xN
0 − xN

k |3
≤ 2

|δk|3
,

for N sufficiently large, whence the limit (73) follows by dominated convergence.
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Figure 1: Profiles for soliton displacement (top) and relative displacement (bot-
tom) for c/π = 1.25, 1.75, 2.5, 5, 100

Lemma 14. There exists N0 and δ > 0 such that

φ′
N (s) ≤ 1− δ for all s ∈ R and N ≥ N0.

Proof. Using that s = φN +Ly with y given by (56), differentiating we find that

1 = φ′
N

(
1 +

Lκ

κ2 cos2 πφN + sin2 πφN

)
≥ φ′

N

(
1 +

Lκ

κ2 + 1

)
for all s. But by Lemma 12, as N → ∞ we have κ → ∞ and

1 +
Lκ

κ2 + 1
= 1 +

π2

κaπ

κ2

κ2 + 1
→ c2

c2 − π2
.

Hence for N0 large enough, the claimed result follows with any δ < π2/c2.

This finishes the proof of Theorem 1.

4.2 Distinguished limits

In Fig. 1, for several values of c/π, we plot profiles for soliton displacement φ(s)
and relative displacement −r(s) = φ(s+ 1)− φ(s). As the figures suggest, the
soliton formula (8) simplifies as c → ∞ and c → π in interesting ways.

In the limit c → ∞, evidently the profile φ → φ∞, where φ∞ is odd with

φ∞(s) = min
(
s, 1

2

)
for s ≥ 0. (76)
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Thus high-speed waves converge to a hard-collision limit, in which one particle
at a time moves at a constant speed, coming to a stop when it collides with the
next particle in front.

In the (sonic) limit c → π, if we scale by writing c2 = π2 + ϵπ then we find
that (8) reduces to

ϵs = tanπφ+O(ϵ). (77)

We find this consistent with the formal long-wave limit obtained in Theorem 3.
This limit is a Benjamin-Ono equation, which for w = πu = −π∂xv(x, τ) takes
the form

2∂τw + 4w∂xw −H∂2
xw = 0 , (78)

since for α = 2 the coefficients κ1 = 2π, κ2 = 4π2 and κ3 = π. Equation (78)
has a solitary wave solution w(x, τ) = W (x− 1

2τ) with

W (z) = Re

(
i

z + i

)
=

1

z2 + 1
, HW (z) = Im

(
i

z + i

)
=

z

z2 + 1
, (79)

which satisfy ∂z(HW ) = 2W 2 −W . Since c =
√
π2 + ϵπ ∼ π + 1

2ϵ, the corre-
spondence z = x − 1

2τ = ϵ(j − πt) − 1
2ϵ

2t is consistent with z ∼ ϵs = ϵ(j − ct)
and

W ∼ π

ϵ

dφ

ds
∼ 1

(ϵs)2 + 1
.

4.3 Numerical comparison with nearest-neighbor models

Let us now compare relative displacement profiles for solitary waves in the
infinite Calogero-Moser lattice with numerical computations for the power-law
nearest-neighbor lattice. Particle positions in the latter are governed by the
system

ẍj = −α
(
(xj+1 − xj)

−α−1 − (xj − xj−1)
−α−1

)
, (80)

keeping only the term with m = 1 on the right-hand side of system (1). For
solitary waves xj(t) = j −φ(j − ct), one can show as in [11] that the (negative)
relative displacement profile r(s) = φ(s+ 1)− φ(s) satisfies

c2r′′(s) = F (r(s+ 1))− 2F (r(s)) + F (r(s− 1)), (81)

with F (r) = α(1− r)−α−1, and infer that

r(s) = (Λ ∗ F ◦ r)(s) =
∫ ∞

−∞
Λ(s− τ)F (r(τ)) dτ, (82)

where Λ(s) = c−2 max(1 − |s|, 0) That is, the function r(·) should be a fixed
point of the nonlinear operator of composing with the force function F followed
by convolution with the ‘tent’ function Λ.
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Figure 2: Relative displacement for solitary waves in nearest-neighbor lattices,
varying α from 0.5 to 3.5 (top to bottom in each subplot). c/cs = 1.25 (top),
2.5 (bottom)
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Figure 3: Relative displacement for solitary waves, comparing infinite-lattice
Calogero-Moser to nearest-neighbor lattice with β = α + 1 = 2.73 for fixed
speed ratio c/cs = 1.25 (top), 2.5 (bottom)
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We numerically compute profiles by straightforward spatial discretization of
the following variant of Petviashvili’s iteration method for such equations [25,
26]. Starting with r0 = 0.01c2Λ, for n = 1, 2, . . . , N compute

r̃n = Λ ∗ F ◦ rn−1 , (83)

Cn =

∫
R
rn−1

/∫
R

r̃n , (84)

rn = Cq
n r̃n . (85)

We take the exponent q slightly greater than 1 to overcorrect amplitude error
that otherwise grows with this type of iteration. The integrals are approximated
by uniform-grid discretization on the finite interval [−20, 20] with step size h =
0.01. With N = 1000 and varying q as needed, we obtain numerical convergence
in all cases treated, finding residual errors in (81) smaller than 10−12, and
|CN − 1| < 10−14.

Nearest-neighbor profiles for a range of values of α are plotted in Figure 2.
In each subplot we keep the ratio of wave speed c to sonic speed cs fixed, either
1.25 or 2.5. In Figure 3 we plot results comparing Calogero-Moser profiles with
profiles for the case β = α+1 = 2.73 that was used as a model for experiments
in [20]. (The sonic speed cs =

√
α(α+ 1) ≈ 2.17322 for (80) and cs = π for

Calogero-Moser.) For larger values of c/cs the graphs become indistinguishable,
approaching the hard-collision limit in each case. For smaller values of c/cs
the Calogero-Moser profile broadens to approach a Benjamin-Ono soliton shape
with algebraic decay, while the nearest-neighbor profile approaches a scaled KdV
sech2 shape, according to results proved in [14].
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A Log correction to scaling in an edge case

Here we prove the claim in Remark 1, to the effect that in the edge case α = 3
of Theorem 3 we obtain the KdV equation after a modified scaling ansatz.

Fix α = 3, p = 1, q = 3. Let us replace the scaling ansatz in (19) by

xj = j + λϵv(x, τ), x = ϵ(j − cαt), τ = νϵqt, (86)

where λ and ν depend on ϵ in a way to be specified.

Proposition 15. Under the hypotheses of Theorem 3, if α = 3 and provided
λ = ν = log(1/ϵ), then the lattice error (20) satisfies Rϵ = λ2ϵ5(Q + o(1)),
where

Q = κ1∂τu+ κ2u∂xu+ ∂3
xu,

with κ1 = 2cα and κ2 = α(α+ 1)(α+ 2)ζα as before.
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Proof. We compute as in the proof of Theorem 3 with the following modifica-
tions. Equations (26) and (27) become

Rϵ = ẍj + λαα1Lϵ + λ2αα2Nϵ +O(ϵ3p+3λ3) , (87)

ẍj = −ϵp+2c2αλ∂xu+ 2ϵp+q+1cαλν∂τu+ ϵp+2qν2∂2
τv , (88)

while the expressions for Lϵ and Nϵ are unchanged from (28) and (29). The
asymptotic expression for Nϵ from Lemma 4 holds without change.

When we compute Lϵ as in case (ii), since (−i sgn k)|k|3 = (ik)3 we find that
the expression in (36) takes the form

L̂ϵ(k) = ϵ3ζ3 ∂̂xu(k) + 2ϵ5S(ϵ|k|) ∂̂3
xu(k), (89)

where, in terms of the function f(x) = 1
2 (1− sinc2(x/2))/x2 from (41),

S(h) = h

∞∑
m=1

1− sinc2(mh/2)

2(mh)3
=

∞∑
m=1

1

m
f(mh). (90)

Lemma 16. 0 < S(h) < ζ3/h
2 for all h > 0, and S(h) ∼ − 1

24 log h as h → 0.

The asymptotic formula follows from L’Hôpital’s rule after noting that

hS′(h) =

∞∑
m=1

f ′(mh)h →
∫ ∞

0

f ′(x) dx = −f(0) = − 1

24
.

From the asymptotic formula it follows S(h) is slowly varying at 0, meaning
that as ϵ → 0, the ratio S(ϵ|k|)/S(ϵ) → 1 for all k ̸= 0. From Karamata’s
theory of regular variation [31], this limit is then uniform for |k| in any compact
subinterval of (0,∞), and the ratio is o(|k|−β) as k → 0 for any β > 0, uniformly
for ϵ small.

Using these facts in the Fourier inversion formula, since û(k)|k|r ∈ L1 for all
r < 7

2 we infer by dominated convergence that as ϵ → 0,∫
R
eikx∂̂3

xu(k)
S(ϵ|k|)
S(ϵ)

dk → ∂3
xu(x, τ). (91)

Hence

Lϵ = ϵ3ζ3∂xu− ϵ5 log ϵ

12
(∂3

xu+ o(1)). (92)

Putting this relation into (87) and noting αα1 = 12, the Proposition follows.

B KdV limit with alternating forces

Here we complete the proof of Lemma 6, which we used in Section 2 to establish
the formal KdV limit for the system (43) in which interaction forces alternately
repel and attract, as in the experimental setup of Molerón et al. [20].
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1. Fix α > 0. The function Sα(h) defined in (45) satisfies

Sα(h) =

∞∑
m=1

(−1)m−1fα(mh)hα, (93)

where, in terms of the entire function f defined in (41),

fα(x) =
1− sinc2(x/2)

xα
= 2x2−αf(x). (94)

Because fα is eventually monotone decreasing, the alternating series (93) con-
verges uniformly on compact subsets of (0,∞), so Sα is continuous.

2. Next we claim that the Mellin transform of Sα, given by

S̃α(s) :=

∫ ∞

0

Sα(h)h
s−1 ds, (95)

is well defined whenever max(−α,−1) < Re s < 0. To control the convergence
of the integral, we pair successive terms in (93), writing

Sα(h) =
∑

m odd

(
fα(mh)− fα(mh+ h)

)
hα. (96)

We establish bounds on the terms of this sum as follows. First, we find (by
Taylor expansion for 0 < x < 1) that since x4f ′(x) = − sinx+ x− 4x3f(x),

f(x) ∈
(
0,

1

4!

)
, f ′(x) ∈

(
−x

5!
, 0

)
for 0 < x ≤ 1, (97)

f(x) ∈
(
0,

1

2x2

)
, f ′(x) ∈

(
−2

x3
,
2

x3

)
for x > 1. (98)

Since 1
2fα(x) = x2−αf(x) we have 1

2f
′
α(x) = (2 − α)x1−αf(x) + x2−αf ′(x),

whence it follows

|f ′
α(x)| ≤ min(x−α, x−1−α) · (6 + α) =: λα(x). (99)

The function λα(x) is (chosen to be) decreasing on (0,∞), ensuring that

|fα(x)− fα(x+ h)| ≤ λα(x)h for all x, h > 0.

Applying this estimate in (96), we note that by Tonelli’s theorem,∫ ∞

0

|Sα(h)|hs−1 dh ≤
∫ ∞

0

∞∑
m=1

λα(mh)hα+s dh

=

∞∑
m=1

1

mα+s+1

∫ ∞

0

λα(x)x
α+s dx

= ζ(α+ s+ 1)

∫ ∞

0

Cmin(1, x−1)xs dx,
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and this is finite provided 0 < α + s and −1 < s < 0. Thus we find that the
Mellin transform of Sα is well defined as claimed, for Re s ∈ (max(−α,−1), 0).

3. After use of Fubini’s theorem and change of variables, we compute that

S̃α(s) =
∑

m odd

∫ ∞

0

(
fα(mh)− fα(mh+ h)

)
hα+s−1 dh

=

∞∑
m=1

(−1)m−1

mα+s

∫ ∞

0

fα(x)x
α+s−1 dx

= ζ∗α+s f̃α(α+ s). (100)

Recall that in Remark 3 we effectively computed the Mellin transform of f .
From (94) and (42), we find that for −2 < Re s < 0,

f̃α(α+ s) = 2f̃(2 + s) = 2 cos
(
π
2 (s− 2)

)
Γ(s− 2).

Thus S̃α extends to a meromorphic function on C with simple poles at s = 2−2k
for k = 0, 1, 2, . . ., where the residue is

Res(S̃α, 2− 2k) = 2ζ∗α+2−2k

(−1)k

(2k)!
. (101)

4. Choose δ ∈ (0,min(1, α)). We claim that, for σ ∈ (−4,−δ) we have

|S̃α(σ + it)| → 0 as |t| → ∞, uniformly in σ, and (102)

t 7→ |S̃α(σ + it)| is integrable on (−∞,∞) if σ ̸= −2. (103)

Using the asymptotic formula [10, (5.11.9)]

|Γ(σ + it)| ∼
√
2π|t|σ−(1/2)e−π|t|/2,

which is valid uniformly as t → ±∞ for σ real and bounded, for |t| > 1 we get

|f̃α(α+ σ + it)| ≤ C|t|σ−(5/2). (104)

Further, since |ζ∗s | = O(|ζs|), the zeta-function bounds from [34, (5.1.1)] yield

|ζ∗α+σ+it| =

{
O(|t|(1/2)−α−σ) for σ ≤ −δ − α,

O(|t|(3/2)+δ) for σ ≥ −δ − α.
(105)

We infer that (102)–(103) hold, and in particular,

|S̃α(σ + it)| =

{
O(|t|−2−α) for σ ≤ −δ − α,

O(|t|−1+δ+σ) for σ > −δ − α.
(106)

5. By the Mellin inversion theorem (see [12, Thm. 2] and [13, Thm. 8.26])
thus we have

Sα(h) =
1

2πi
lim

T→∞

∫ c+iT

c−iT

S̃α(s)h
−s ds, for c ∈ (max(−α,−1),−δ). (107)

https://dlmf.nist.gov/5.11.E9
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Now, because of the uniform decay in (102), we can deform the path in (107)
to move c from the interval stated to a value c ∈ (−4,−2), picking up only the
residue of the integrand at the pole s = −2 (k = 2). Thus we find

Sα(h) =
1
12ζ

∗
α−2 h

2 + Ẽ(h), Ẽ(h) =
h−c

2π

∫ ∞

−∞
S̃α(c+ it)h−it dt.

Because t 7→ |S̃α(c + it)| is integrable for such c, we find Ẽ(h) = O(h−c) as
h → 0. With c = −3 this yields the desired statement, and finishes the proof.

C Bäcklund transform for the Calogero-Suther-
land system

For the convenience of the reader, we verify here that the (trigonometric)
Bäcklund transform equations (47)–(48) described by Wojciechowski [38] im-
ply the Calogero-Moser-Sutherland equations (49)–(50) in the case that we use,
corresponding to the trigonometric pair potential.

It is efficient to follow the approach suggested for the rational case in [19]
and write the equations as one system involving variables x1, . . . , xN+M and
signs σ1, . . . , σN+M defined by

xj = yj−N , j = N + 1, . . . , N +M, (108)

σj =

{
+1 j = 1, . . . , N,

−1 j = N + 1, . . . ,M.
(109)

With these variables, the Bäcklund pair (47)–(48) is written in a unified way as

iẋj = a

N+M∑
k=1
k ̸=j

σk cot a(xj − xk) = ia

N+M∑
k=1
k ̸=j

σk
zj + zk
zj − zk

, (110)

with zj = e2iaxj , j = 1, . . . , N +M . Noting cotx sin−2 x = cotx(1+cot2 x) and
using the cotangent difference identity in (62), in order to prove that equations
(49)–(50) hold, our goal is to show that

ẍj = 2a3
∑
k ̸=j

σk=σj

i
zj + zk
zj − zk

(
1−

(
zj + zk
zj − zk

)2
)

= −8ia3
∑
k ̸=j

σk=σj

zj + zk
(zj − zk)3

zjzk, j = 1, . . . , N +M. (111)

Toward this end, we note (110) implies

żj = 2iaẋjzj = 2ia2zj
∑
l ̸=j

σl
zj + zl
zj − zl

. (112)
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We then differentiate (110) and use (112) to find

ẍj = a
∑
k ̸=j

σk
(żj + żk)(zj − zk)− (zj + zk)(żj − żk)

(zj − zk)2
(113)

= 2a
∑
k ̸=j

σk
zj żk − zkżj
(zj − zk)2

(114)

= 4ia3
∑
k ̸=j

σkzjzk
(zj − zk)2

∑
l ̸=k

σl
zk + zl
zk − zl

−
∑
l ̸=j

σl
zj + zl
zj − zl

 . (115)

Extracting the terms with l = j and l = k from the respective inner sums yields

ẍj = 4ia3
∑
k ̸=j

σkzjzk
(zj − zk)2

(
σj

zk + zj
zk − zj

− σk
zj + zk
zj − zk

)

+ 4ia3
∑
k ̸=j

∑
l/∈{j,k}

σkzjzk
(zj − zk)2

· 2σlzl(zj − zk)

(zk − zl)(zj − zl)
. (116)

The double sum vanishes because terms cancel in pairs: upon switching k and l
the factors σkzkσlzl and (zj−zk)(zj−zl) remain the same, but (zk−zl) changes
sign. Therefore upon simplifying, since σ2

k = 1 we find

ẍj = −4ia3
∑
k ̸=j

(σkσj + 1)
zj + zk

(zj − zk)3
zjzk . (117)

This is equivalent to (111), finishing the proof that the (trigonometric) Bäcklund
equations (47)–(48) imply the Calogero-Sutherland equations (49)–(50).

D Projection method for Calogero-Sutherland
systems

For completeness, here we provide a brief account of the projection method of
Olshanetsky and Perelomov [22] for the solution of Calogero-Sutherland system.
There is a singularity in this case of the trigonometric potential that these au-
thors did not explicitly treat, and we also describe a modified solution procedure
that does not encounter any singularity.

The calculations are rather straightforward if one takes for granted, as we
do, the result of Moser [21] which states that for any solution of the Calogero-
Sutherland equations in (49), the Lax equation

L̇+ [iM,L] = 0 (118)

holds, with time-dependent matrices L and M given by

Ljk = δjk ẋj + (1− δjk)ia cot a(xj − xk) ,

iMjk = δjk
∑
l ̸=j

ia2 csc2 a(xj − xk)− (1− δjk)ia
2 csc2 a(xj − xk) .
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With the (unitary) matrix U(t) determined by solving U̇ = U(iM), U(0) = I,
the matrix V = ULU−1 is constant in time, since V̇ = U(L̇+ [iM,L])U−1 = 0.
The idea of Olshanetsky and Perelomov is to define a unitary matrix

Y (t) = UZU−1, Z = diag(zj) = diag(e2iaxj ) (119)

and compute Ẏ = U(Ż + [iM,Z])U−1, and further that

1
2 (Ẏ Y −1 + Y −1Ẏ ) = U

(
ŻZ−1 + 1

2 (Z
−1(iM)Z − Z(iM)Z−1)

)
U−1

= U(2iaL)U−1 = 2iaV.

With Bjk = δjke
iaxj(0), the matrix X(t) = Be2iaAtB satisfies X(0) = Y (0) and

1
2 (ẊX−1 +X−1Ẋ) = 2iaV ,

the same differential equation, provided

1
2 (BAB−1 +B−1AB) = V.

Since V = L(0), this means that Ajj = Ljj = ẋj(0), while for j ̸= k, with
ζj = eiaxj and at t = 0,

1
2Ajk(ζj ζ̄k + ζ̄jζk) = Ajk

zj + zk
2ζjζk

= Ljk = −a
zj + zk
zj − zk

.

Provided zj + zk ̸= 0 for all j ̸= k, it follows

Ajk =
−2ζjζk
zj − zk

=
ia

sin a(xj − xk)
, (120)

and it follows X(t) = Y (t) for all t. A subtlety here is that zj + zk = 0 is
possible and corresponds to a singular set for the differential equation on the
unitary group where Ẋ is not determined. However, one can approximate by
nonsingular data and justify that (120) yields Y (t) = X(t) in all cases. The
result is that z1(t), . . . , zN (t) are the eigenvalues of X(t) for all t.

Modified procedure. A modified solution procedure that has no singularities
is as follows. Using (119), compute instead that

Ẏ Y −1 = U(ŻZ−1 + iM − Z(iM)Z−1)U−1

= U(2ia(L+K))U−1 =: 2iaW, (121)

where 2iaK = iM − 1
2Z

−1(iM)Z − 1
2Z(iM)Z−1. Evidently Kjj = 0 for all j,

while for j ̸= k,

2iaKjk = iMjk(1− 1
2 (z̄jzk + zj z̄k))

=
−ia2

sin2 a(xj − xk)
(1− cos 2a(xj − xk)) = −2ia2.
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Hence K = a(I − uuT ), where uj = 1 for all j. Since K̇ = 0, and because
Mu = 0 and M is Hermitian, we have [iM,K] = 0, and we find

Ẇ = U(L̇+ [iM,L] + K̇ + [iM,K])U−1 = 0.

Therefore, since Y (0) = Z(0) and Ẏ = (2iaW )Y , it follows

Y (t) = e2iaWtZ(0), (122)

where the entries of the constant matrix W are

Wjk = Ljk +Kjk = δjk ẋj + (1− δjk)(ia cot a(xj − xk)− a) , (123)

evaluated at t = 0. The time-dependent values z1(t), . . . , zN (t) are again the
eigenvalues of Y (t).
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